UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	2	Mark Scheme: Teachers' version	Syllabus	Paper 21	
			GCE AS/A LEVEL – October/November 2011	9702		
1	(a) de	nsity = r	mass / volume		B1	[1]
	de	nsity of	liquids and solids same order as spacing similar / to gases much less as spacing much more of gases much lower hence spacing much more	about 2×	B1 B1	[2]
	(c) (i)	densit	$y = 68 / [50 \times 600 \times 900 \times 10^{9}]$ = 2520 (allow 2500) kg m ³		C1 A1	[2]
	(ii)		F / A 68 × 9.81 / [50 × 600 × 10 ⁶] 2.2 × 10 ⁴ Pa		C1 C1 A1	[3]
2	` '	•	ne product of one of the forces and the distance betwood indicular distance between the forces	veen forces	M1 A1	[2]
	(b) (i)	torque	e = 8 × 1.5 = 12Nm		A1	[1]
	(ii)		is a resultant torque / sum of the moments is not zero od rotates) and is not in equilibrium)	M1 A1	[2]
	(c) (i)		2 = 2.4 × 0.45 .9(0) N		C1 A1	[2]
	(ii)	A = 2.	4 – 0.9 = 1.5 N / moments calculation		A1	[1]
3	(a) (i)	horizo	ental velocity = 15 cos 60° = 7.5 m s ¹		A1	[1]
	(ii)	vertica	al velocity = $15 \sin 60^\circ = 13 \mathrm{m s}^{-1}$		A1	[1]
	(b) (i)		$a^{2} + 2as$ 3) ² / (2 × 9.81) = 8.6(1) m g = 10 then max. 1		A1	[1]
	(ii)	<i>t</i> = 13	/ 9.81 = 1.326 s or <i>t</i> = 9.95 / 7.5 = 1.327 s		A1	[1]
	(iii)	velocit	ty = 6.15 / 1.33 = $4.6 \mathrm{m s}^{-1}$		M1 A0	[1]
	(c) (i)	chang	ye in momentum = $60 \times 10^{3} [-4.6 - 7.5]$ = $(-)0.73 \mathrm{Ns}$		C1 A1	[2]
	(ii)	relativ	elocity / kinetic energy is less after the collision or e speed of separation < relative speed of approach inelastic		M1 A0	[1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	21

- 4 (a) electrical potential energy (stored) when charge moved and gravitational potential energy (stored) when mass moved
 due to work done in electric field and work done in gravitational field

 B1 [2]
 - (b) work done = force × distance moved (in direction of force) and force = mg M1 $mg \times h$ or $mg \times \Delta h$ A1 [2]
 - (c) (i) $0.1 \times mgh = \frac{1}{2} mv^2$ B1 $0.1 \times m \times 9.81 \times 120 = 0.5 \times m \times v^2$ B1 $v = 15.3 \,\text{ms}^{-1}$ A0 [2]
 - (ii) $P = 0.5 \text{ m } v^2 / t$ C1 $m / t = 110 \times 10^3 / [0.25 \times 0.5 \times (15.3)^2]$ C1 $= 3740 \text{ kg s}^{-1}$ A1 [3]
- **5** (a) ohm = volt / ampere B1 [1]

 - (c) (i) $\rho = [3.4 \times 1.3 \times 10^{-7}] / 0.9$ C1 = $4.9 \times 10^{-7} (\Omega \text{m})$ A1 [2]
 - (ii) max = 2.(0) V A1 $min = 2 \times (3.4 / 1503.4) = 4.5 \times 10^{-3} V$ A1 [2]
 - (iii) $P = V^2 / R$ or P = VI and V = IR= $(2)^2 / 3.4$ = 1.18 (allow 1.2) W A1 [2]
 - (d) (i) power in Q is zero when R = 0 B1 [1]
 - (ii) power in Q = 0 / tends to zero as R = infinity B1 [1]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	21

- **6** (a) extension is proportional to force (for small extensions) B1 [1]
 - (b) (i) point beyond which (the spring) does not return to its original length when the load is removed B1 [1]
 - (ii) gradient of graph = $80 \,\mathrm{Nm}^{-1}$ A1 [1]
 - (iii) work done is area under graph $/ \frac{1}{2} Fx / \frac{1}{2} kx^2$ C1 = 0.5 × 6.4 × 0.08 = 0.256 (allow 0.26) J A1 [2]
 - (c) (i) extension = 0.08 + 0.04 = 0.12 m A1 [1]
 - (ii) spring constant = $6.4 / 0.12 = 53.3 \text{ Nm}^{-1}$ A1 [1]
- 7 (a) nuclei with the same number of protons
 and a different number of neutrons

 B1
 [2]
 - (b) (i) (mass + energy) (taken together) is conserved (B1) momentum is conserved (B1) one point required max. 1 B1 [1]
 - (ii) a = 1 and b = 0 B1 x = 56 B1 y = 92 B1 [3]
 - (c) proton number = 90 B1 nucleon number = 235 B1 [2]